

1

Instruction Manual
Jenny Science

XENAX® Xvi EtherNet/IP® and
Studio5000® Logix Designer

Version 2.0.14

Edit ion January 2025

XENAX® Ethernet servo controller with
EtherNet/IP® Busmodul

General
This manual describes the connection of a

XENAX® Xvi75V8S and XENAX® Xvi48V8 Servo
controller to an Allen-Bradley PLC with

Studio5000® Logix Designer V24 and the
Jenny Science Add-On Profile (JSC_MC_AOP).

2

Contents

1 Development Environment 4

1.1 Tools 4

1.2 Controller 5

1.3 Actuators 5

1.4 Additional Resources 6

1.5 Software requirements and basic settings 7

2 Example Projects for Studio 5000 8

2.1 Open Project 10

2.2 EDS-File Installation 10

2.3 IP-Address Setup with BootP-DHCP-Tool 11

2.4 IP Address Setup with RSLinx 13

2.5 Launch Example Project 14
2.5.1 SimpleTest 15

2.5.2 Forceteq® basic ForceLimit 16

2.5.3 Forceteq® basic ForceMonitoring 17

2.5.1 Forceteq® pro ForceLimit 19

2.5.2 Forceteq® pro ForceMonitoring 19

2.5.3 CyclicSyncMotion 1Axis 20

2.5.4 CyclicSyncMotion 2Axis 20

2.5.5 CyclicSyncMotion 1Axis Rotary 20

3 New Project in Studio 5000 22

3.1 Create Project 22

3.2 Library Installation 23

3.3 EDS-File Installation 24

3.4 IP-Address Setup with BootP-DHCP-Tool 25

3.5 IP Address Setup with RSLinx 27

3.6 Add XENAX® Module 28

3.7 Mc_Axis and Messages 29

3.8 Task Cycle Time 29

4 Cyclic Synchronous Motion 30

4.1 Limitations 30

4.2 Virtual Axis 31

4.3 Task configuration 35
4.3.1 Main Task 35

4.3.2 Motion Task 35

4.3.3 Enable time Synchronization 36

5 JS_MC_AOP Motion Library 38

5.1 State Diagram 38

3

5.2 Required AOIs 40
5.2.1 Init 40

5.2.2 CyclicIn 40

5.2.3 CyclicOut 41

5.2.4 Power 41

5.2.5 Reference 42

5.2.6 Reset 43

5.2.7 HandleModeOfOperation 43

5.3 Optional Function Blocks 43
5.3.1 MoveCyclicPosition 43

5.3.2 MoveCyclicPositionRotary 44

5.3.3 MoveAbsolute 45

5.3.4 MoveRelative 46

5.3.5 JogVelocity 46

5.3.6 Halt 47

5.3.7 Stop 47

5.3.8 ForceCalibration 48

5.3.9 SetOA 48

5.3.10 ReadPSR 49

5.3.11 ReadStatus 49

5.3.12 ReadDigitalInput 50

5.3.13 WriteDigitalOutput 50

5.3.14 ReadActualPosition 50

5.3.15 WriteLimitCurrent 51

5.3.16 WriteLimitForce 51

5.3.17 ReadActualCurrent 52

5.3.18 ReadActualForce 52

5.3.19 ReadAxisError 53

5.3.20 AxisErrorCollector 54

5.3.21 GetAttribute 54

5.3.22 SetAttribute 55

5.4 Minimum and Maximum Values of Function Blocks 56

5.5 Error Numbers of JS_MC_AOP 56

5.6 Error Sources 58

5.7 Error Type 58

6 Upgrade from XENAX® 48V8/75V8 to 75V8S 59

6.1 Replace XENAX in project configuration 59

6.2 Check Input/Output Assembly 61

7 Appendix 63

7.1 Reference methods 63

4

1 Development Environment

1.1 Tools

Allen-Bradley / Rockwell PLC
A programmable logic controller is used to

control multiple axes over Ethernet/IP.

Studio5000® Logix Designer V24
In order to program an Allen-Bradley / Rockwell
PLC, the engineering software Studio5000 Logix

Designer is required.
All explanations in this instruction manual are

based on Studio5000 Logix Designer V24.01.

WebMotion®
The proprietary graphical user interface from

Jenny Science servo controllers is stored in the
embedded web server of the XENAX® servo

controller as a Java applet.
WebMotion® is launched with a web browser by

entering the corresponding TCP/IP address
of XENAX®.

LINAX® linear motor axes, ELAX® linear motor
slides or ROTAX® rotary motor axes are

automatically recognized. The corresponding
controller parameters are saved and loaded

automatically. With the Quick Start button, the
linear motors can easily and immediately be

operated.

5

1.2 Controller

XENAX® servo controller
An optional EtherNet/IP bus module is available.

Each XENAX® can control one motor axis.

1.3 Actuators

LINAX® Linear motor axes
There are different series available. The LINAX®

linear motor axes are highly modular and can be
flexibly combined amongst each other.

The XENAX® servo controller identifies the
connected LINAX® linear motor and configures

the controller parameters automatically.

ELAX® Linear motor Slides
Specifically designed for handling and pick-and-

place tasks with strokes from 30mm up to
150mm. The configuration is extremely modular
and there is only one cable for connecting to the

servo controller.
The XENAX® servo controller identifies the ELAX®
linear motor slider and configures the controller

parameters automatically.

ROTAX® Rotary motor axes
Specifically designed for fast and precise

assembly and handling tasks. It can be equipped
with standard gripping tools which enables a

360° rotation and has a hollow shaft
feedthrough for vacuum or compressed air.

The XENAX® servo controller identifies the
ROTAX® rotary axis and configures the controller

parameters automatically.

Rxhq = high torque Rxvp = vacuum pressure

6

1.4 Additional Resources

The following resources are needed for the
successful operation of the XENAX® servo

controller with an EtherNet/IP bus module.
 Available to download from:

http://www.jennyscience.ch/en/download/

 Indication
Filename

Description

EtherNet/IP PDF.zip
EtherNet_IP_PDF.zip

Manual of the EtherNet/IP bus module

Please make sure that the bus module is properly
installed. For further instructions see the corresponding
bus module manual.

Version x.yz EtherNet/IP.zip
Version x.yz EtherNet_IP.zip

Firmware EtherNet/IP bus module and the Electronic
datasheets (EDS*) of the EtherNet/IP interface for
XENAX® Xvi 75V8S and XENAX® Xvi 48V8

Check the installed bus module firmware, see chapter
1.5 for recommended firmware version.

*: EDS - Electronic Data Sheet is a file format that
describes the communication behaviour and the object
dictionary entries of a device. This allows tools such as
service tools, configuration tools, development tools, and
others to handle the devices properly (Reference:
https://de.wikipedia.org/wiki/CANopen).

PLCopenAOP Studio5000 AllenBradley Vx.y.zip
PLCopenAOP_Studio5000_Vx.y.zip

Jenny Science Add-On profile for MotionControl
(JSC_MC_AOP) as a library for Studio5000 and example
projects to control a linear axis (including this manual)

Configuration to use the example projects:

Linear motor XENAX® servo controller Allen-Bradley PLC
or ROTAX® Xvi75V8 / Xvi48V8 / Xvi75V8S

RJ45 Network Patch Cable

http://www.jennyscience.ch/en/download/
http://www.jennyscience.de/fileadmin/user_upload/Jenny%20Science.ch/3%20XENAX/Optional%20mit%20Busmodul/EtherNet_IP_PDF.zip
http://www.jennyscience.de/fileadmin/user_upload/Jenny%20Science.ch/3%20XENAX/Optional%20mit%20Busmodul/Version%202.12%20EtherNet_IP.zip

7

1.5 Software requirements and basic settings
Software requirements:

 Subject Remark

Studio5000® Logix Designer Version 24.0 or higher

XENAX® firmware V5.24 or higher

EtherNet/IP bus module firmware V2.28 or higher

Basic settings in Studio 5000:

Please check that these basic settings properly done in your project to gain successful operation!

Subject Remark

Module definition

Connection → Full Assembly (refer to green frame
below)

Module RPI Recommended: 4 ms (refer to blue frame below)

Task configuration including the axis program

Type: Periodic (refer to yellow frame below)
Period: Higher or equal than the module RPI

8

2 Example Projects for Studio 5000

This chapter describes how to put a Jenny
Science axis into operation. Example projects

are taken for this purpose.

There are various example projects available.
It is recommended to start with the first

example project. This is a very simple demo in
which the axis drives between two positions.

After that, take the demo application which fits
your application.

Forceteq®
Forceteq® basic works by measuring the motor

current which provides a good approximation
for the actual current. On the other hand,

Forceteq® pro utilises an external force sensor.
See Signateq® on www.jennyscience.ch/en for

more information.

Force Limitation
Force limitation enables the PLC to limit the

motor force. Forcteq® basic does this by
limiting the motor current whereas Forcteq®

pro provides the option to enable a force
limitation on an external sensor.

Example No. Example Name

1 Simple Test

2 Forceteq basic Forcelimit

3 Forceteq basic ForceMonitoring

4 Forceteq pro Forcelimit*

5 Forceteq pro ForceMonitoring*

6 Cyclic Sync Motion

7 Cyclic Sync Motion

*only available for XENAX® xvi 75V8S servo controller

Example No. 1 2 3 4 5 6 7

Forceteq® - Basic Pro Basic

Force Limitation x x x x x x

Digital I/O x x x x x x

Attribute R/W x x x x

Cyclic Sync Motion x x

http://www.jennyscience.ch/en

9

Digital I/O
The Xenax® has digital inputs and outputs

which can be used controlled by a PLC.

Attribute R/W
All Webmotion parameters can be modified by

a PLC. Explicit messages are used for this
purpose. See Ethernet_IP_Manual for more

information. https://www.jennyscience.ch/

Cyclic Sync Motion

Cyclic Sync Motion binds a Jenny Science axis
to a virtual axis from Studio5000. This makes it

possible to drive with xy-coordinate system
move commands from Studio5000.

https://www.jennyscience.ch/en/download

10

2.1 Open Project

Start Studio 5000 and import the .L5K file from
the demo folder.

Save the project to your project folder.

2.2 EDS-File Installation

Register the EDS file for your XENAX® controller
with the EDS Wizard (EDS Hardware Installation

Tool) in Studio5000 Logix Designer.

Download the latest EDS file from your webpage
www.jennyscience.com under

XENAX® Servocontroller→Firmware Bus Module.

https://www.jennyscience.ch/en/download

11

2.3 IP-Address Setup with BootP-DHCP-Tool

The IP address of the XENAX® Busmodule is set

to DHCP by default. Use BootP-DHCP-Tool to
assign an IP address to the bus module if no
DHCP server is available. This tool has to be

downloaded separate from Rockwell
Automation. Changes to the IP setting are not

possible with an established Class 1 connection.
The PLC must be deactivated for this.

Open BootP-DHCP-Tool and

select the Network Interface.

Here the Network will be scanned for the
devices. Please wait…

As soon as the correct MAC-Adress is found
click on it to change the settings and confirm

with OK.

wait for scan…

12

Wait here for the new scan and the IP-Adress

will appears in the “Entered Relations”

In the WebMotion the IP-Adress is recognized
but DHCP is still Enabled.

Click to the MAC-Adress and “Desable
BOOT/DHCP”

If the settings are correct skip the
chapter “2.4 IP Address Setup with RSLinx”

If this message occour
“Communication Error”, “Failed to complete

the requested operation” or
“[Set_Attribute_Single] (16)” in Errors and

warnings of BootP then please deactivate the
cyclic communication to the PLC. Changes to

the IP setting are not possible with an
established Class 1 connection.

13

2.4 IP Address Setup with RSLinx

The IP address of the XENAX® Busmodule is set

to DHCP by default. RSLinx is tool, that gets
installed with Studio 5000. Use RSLinx to change
the IP address when there was already set an IP
address from your DHCP-Server. Changes to the

IP setting are not possible with an established
Class 1 connection. The PLC must be deactivated

for this.

Stop the cyclic communication and Start RSLinx.
Open RsWho.

Configure a new Driver if there is none.

Select the EtherNet/IP driver, click on add New,
follow the instructions and click close at the end.

Open Module Configuration of each XENAX®
Servocontroller.

14

Switch from DHCP to manually and enter the IP
settings manually.

Enter the same IP address in Studio 5000 in the
Axis settings.

2.5 Launch Example Project

Choose the target PLC
and open the MainRoutine.

The program can be downloaded to the PLC.

15

2.5.1 SimpleTest

Fist demo project moves an axis between 0 and
44000 increments. The demo project contains an

example AOI for a Jenny Science Axis called
JsAxisSimple. This AOI demonstrates the usage

of the Jenny Science Motion Control
(JS_MC_AOP) library. The source code

JsAxisSimple AOI is open and shall be adjusted
for user specific needs. The interface of

JsAxisSimple AOI is designed to be as intuitive as
possible.

The switch hmi_StartDemo is used to start and
stop the demo application. It is set by default.

JsAxisSimple
Name Type Usage Function

PowerEnable BOOL In Switches the output stage on and off. When power is enabled, the axis drives
immediately the target position.

TargetPosition DINT In After power up, the motor will drive to this position. Modify this value to drive to
a new position.

TargetReached BOOL Out True if the power stage is enabled and axis stands at the target position.

Velocity DINT In Maximal Velocity [increments/s] used to drive to target position.

Acceleration DINT In Maximal Acceleration [increments/s^2] used to drive to target position.

Scurve DINT Out Jerk or change in acceleration in %, 1% = rough drive, 100% = smooth drive,
default: 20%.

RefOnPowerUp BOOL In If true, Axis is referenced automatically after enabling the output stage,

ReferenceMode DINT In Select reference mode: 0: motor type specific default, see 8.1 for more details

AcknowledgeError BOOL In Acknowledges a pending error. Acknowledging an Axis error calls MC_Reset in
the background which clears the error on the XENAX®.

AcknowledgeDone BOOL Out Wait for this signal after an error is Acknowledged. Axis errors take longer
because an axis reset command is executed. Other errors are acknowledged
immediately.

ErrorPending BOOL Out True, if an error is pending and waits to be acknowledged.

ErrorSource DINT Out Source of pending error. See 6.6 for more details.

ErrorNumber DINT Out Error number of pending error. See 6.5 for more details.

CommunicationOK BOOL Out Cyclic communication with axis is ok.

AxisRef Module InOut A reference to the Axis which should be controlled by the AOI.

16

2.5.2 Forceteq® basic ForceLimit

This project demonstrates the force limitation
part of Forceteq® basic. The axis drives forward

with a limited force. If an obstacle is in the
forward path, the force limit will be reached and

the axis moves back quickly to the starting
position. The demo contains a

JsAxisForceteqBasic1 AOI which is an extended
version of the JsAxisSimple. JsAxisForceteqBasic1
contains all required features for force limitation
and the possibility to stop an ongoing movement

of the axis.

JsAxisForceteqBasic1 (only extended signals listed, contains also all signals from JsAxisSimple 2.5.1)
Name Type Usage Function

ForceCalibOnPowerUp BOOL In If true, Force Calibration is performed after enabling the
output stage.

FCStartPos DINT In Start position of Force Calibration in [increments].

FCEndPos BOOL In End position of Force Calibration in [increments]. Set start
and end position to 0 to clear the calibration.

LimitIForce DINT In 0: no Force Limitation, >0: Force limited to x * [10mA]

LimitIForceReached BOOL Out Axis is in force limitation.

Stop DINT In Axis stops and will not move until Stop input is set back to 0.

StopDone BOOL Out Axis stopped due to Stop input set.

DigitalInput DINT Out Read digital inputs of the XENAX.

DigitalOutput BOOL In Write digital outputs of the XENAX.

17

2.5.3 Forceteq® basic ForceMonitoring

The ForceMonitoring demo program showcases
the main features of Forceteq® such as Force

Calibration, Force Limitation and Force
Monitoring.

This demo alternatingly calls

JSC_MC_MoveAbsolute (Position 0 or 44000).
During the move from position 0 to 44000, Force

Monitoring with 3 sectors is activated and
LimitIForce is set to 200mA. A sector is so

configured that it has one entry and no exit to be
valid. This way a sector is valid when the axis

stopped moving in the sector. The sectors can be
watched in Webmotion® under “move axis by

Forceteq®” → “Diag I_Force”.

Configuration of the 3 sectors:

 ******* Sector 1 I_Force 1 ***************
Sector IForce Start = 0
Sector IForce End = 14000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

 ******* Sector 2 I_Force 2 ***************
Sector IForce Start = 14000
Sector IForce End = 28000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

 ******* Sector 3 I_Force 3 ***************
Sector IForce Start = 28000
Sector IForce End = 42000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

POSITION

I_
FO

R
C

E

Se
ct

o
r

1

Se
ct

o
r

2

Se
ct

o
r

3

18

If there is a touch detected in one of these

sectors, the move is stopped (see the examples
in Sector 1 and Sector 3 below) and a fast

backward move to position 0 is started:

The JSAxis AOI block used in this demo has
additional signals to read and write Webmotion

parameters.

JsAxisForceteqBasic2 (only extended signals listed, contains also all signals from JsAxisForceteqBasic1)
Name Type Usage Function

AttributeClass DINT In Parameter Class, see Ethernet_IP_Manual*.

AttributeId DINT In Parameter Id, see Ethernet_IP_Manual*.

AttributeWriteExecute BOOL In Writes the WriteValue to the selected parameter.

AttributeWriteValue DINT In Value to write.

AttributeWriteLength DINT In Value length in bytes.

AttributeWriteDone DINT Out Set if write process is completed.

AttributeReadExecute BOOL In Reads selected parameter.

AttributeReadValue DINT Out Result of the read process.

AttributeReadDone BOOL Out Set if read process is completed.

Fixed sector offset is set to the 1000

19

2.5.4 Forceteq® pro ForceLimit

Forceteq® pro utilises an external force sensor
connected to the XENAX® over a Signateq®

device. This demo works the same way as its
basic counterpart, except all external forces

must be applied to the force sensor instead of
the motor. The ForceLimit from Forceteq® basic
is still available in addition to the Forceteq® pro

ForceLimit.

2.5.5 Forceteq® pro ForceMonitoring

Forceteq® pro utilises an external force sensor
connected to the XENAX® over a Signateq®

device. This demo works the same way as its
basic counterpart, except all external forces

must be applied to the force sensor instead of
the motor. The ForceLimit from Forceteq® basic
is still available in addition to the Forceteq® pro

ForceLimit.

JsAxisForceteqPro1 (only extended signals listed, contains also all signals from JsAxisSimple 2.5.1)
Name Type Usage Function

ForceCalibOnPowerUp BOOL In If true, Force Calibration is performed after enabling the
output stage.

FCStartPos DINT In Start position of Force Calibration in [increments].

FCEndPos DINT In End position of Force Calibration in [increments]. Set start
and end position to 0 to clear the calibration.

LimitIForce_basic DINT In 0: no Force Limitation, >0: Force limited to x * [10mA].

LimitIForceReached_basic BOOL Out Axis is in force limitation.

LimitForce_pro DINT In 0: no Force Limitation, >0: Force limited to x * [1mN].

LimitForceReached_pro BOOL Out Axis is in force limitation.

Stop BOOL In Axis stops and will not move until Stop input is set back to 0.

StopDone BOOL Out Axis stopped due to Stop input set.

DigitalInput DINT Out Read digital inputs of the XENAX.

DigitalOutput DINT In Write digital outputs of the XENAX.

JsAxisForceteqPro2 (only extended signals listed, contains also all signals from JsAxisForceteqPro1)
Name Type Usage Function

AttributeClass DINT In Parameter Class, see Ethernet_IP_Manual*.

AttributeId DINT In Parameter Id, see Ethernet_IP_Manual*.

AttributeWriteExecute BOOL In Writes the WriteValue to the selected parameter.

AttributeWriteValue DINT In Value to write.

AttributeWriteLength DINT In Value length in bytes.

AttributeWriteDone DINT Out Set if write process is completed.

AttributeReadExecute BOOL In Reads selected parameter.

AttributeReadValue DINT Out Result of the read process.

AttributeReadDone BOOL Out Set if read process is completed.

POSITION

FO
R

C
E

Se
ct

o
r

1

Se
ct

o
r

2

Se
ct

o
r

3

20

2.5.6 CIP Sync 1Axis

In this example project, an axis drives between 2
positions in cyclic synchronous position mode.
Motion Axis Move (MAM) is used on a virtual

axis. The virtual axis is then linked with the real
Jenny Science axis.

To enable CyclicSyncMotion, the OperationMode

is set to 8 instead of 1.

A new MotionRotune is created, where the
position of the virtual axis is copied to the target

position of the real axis.

2.5.7 CIP Sync 2Axis

This example includes driving with a coordinate
System. 2 axes are employed for a xy system.

MCLM and MCCM function are used directly on
the coordinate System for this demo application.

2.5.8 CIP Sync 1Axis Rotary

Example project which shows how to drive in
degree instead of increments with a rotary axis

in Cyclic Synchronous position (csp) mode.

21

2.5.9 CIP Sync Gantry

Example of two axes in a Gantry system and
cyclic synchronous position mode.

Use the first demo “Simple Test” for Gantry

systems in profile position mode.

22

3 New Project in Studio 5000

This chapter describes how to put a Jenny

Science Axis into operation without a demo
project. It is possible to create a new project or

to add a Jenny Science axis into an existing
project.

3.1 Create Project

Create a new project.

Choose your PLC and the name of the project.

Select your preferred revision and click finish.

23

3.2 Library Installation

Add the Jenny Science PLCopen library to the

project by importing Add-On Instructions.

You can import all AOIs and delete the AOIs
which are not needed.

If an older Version of the library is already
installed in the project, it is important to select

Overwrite on any Data Type with differences.
Differences are indicated with an icon.

24

3.3 EDS-File Installation

Register the EDS file for your XENAX® controller
with the EDS Wizard (EDS Hardware Installation

Tool) in Studio5000 Logix Designer.

Download the latest EDS file from your webpage
www.jennyscience.ch under

XENAX® Servocontroller→Firmware Bus Module.

https://www.jennyscience.com/en/download

25

3.4 IP-Address Setup with BootP-DHCP-Tool

The IP address of the XENAX® Busmodule is set

to DHCP by default. Use BootP-DHCP-Tool to
assign an IP address to the bus module if no
DHCP server is available. This tool has to be

downloaded separate from Rockwell
Automation. Changes to the IP setting are not

possible with an established Class 1 connection.
The PLC must be deactivated for this.

Open BootP-DHCP-Tool and

select the Network Interface.

Here the Network will be scanned for the
devices. Please wait…

As soon as the correct MAC-Adress is found
click on it to change the settings and confirm

with OK.

wait for scan…

26

Wait here for the new scan and the IP-Adress
will appears in the “Entered Relations”

In the WebMotion the IP-Adress is recognized
but DHCP is still Enabled.

Click to the MAC-Adress and “Desable
BOOT/DHCP”

If the settings are correct skip the
chapter “3.5 IP Address Setup with RSLinx”

If this message occour
“Communication Error”, “Failed to complete

the requested operation” or
“[Set_Attribute_Single] (16)” in Errors and

warnings of BootP then please deactivate the
cyclic communication to the PLC. Changes to

the IP setting are not possible with an
established Class 1 connection.

27

3.5 IP Address Setup with RSLinx

The IP adresse of the XENAX® Busmodule is set
to DHCP by default. Use RSLinx to set a fixed IP

address.

Start RXLinx and Open RsWho.

Configure a new Driver if there is none.

Select the EtherNet/IP driver, click on add New,
follow the instructions and click close at the end.

Open Module Configuration of each XENAX®
Servocontroller.

Switch from DHCP to Manually and configure the
IP settings.

28

3.6 Add XENAX® Module

Select New Module in the I/O Configuration
folder.

Select your XENAX® version and add it to the
project.

Name the new XENAX® Module,
enter the IP address which was set in RXLinx,

and change the connection to
“Exclusive Owner, Full Assembly”.

Select Force Assembly or CIP Sync Assembly
depending on the application.

29

3.7 Mc_Axis and Messages

The Library is described in detail in chapter 6.
However, there are some pitfalls which can be

avoided by reading this section.

Every axis requires one instance of the
Mc_Axis structure. All function blocks for the

same axis share the same instance of the
Mc_Axis structure. The input and output values

of the Mc_Axis structure must be copied
from/to the real Axis with a CPS block (see

demo application).

Some function blocks require an instance of a
message. A new instance is required for every
block. The messages are mostly configured by

the function block itself except for two
settings.

There are get and set messages. The correct
service type for each message type and the
linked source/destination element must be

selected manually. Studio 5000 may ask you to
configure other parameters than service type

and Destination/Source element. However,
those values will be overwritten at runtime.

3.8 Task Cycle Time

A periodic task cycle time of 4ms is
recommended.

30

4 Cyclic Synchronous Motion

Cyclic synchronous motion enables driving with
a virtual axis. A Jenny Science axis can be linked

with a virtual axis. This operation mode
requires a few more setup steps than

described in the previous step. On the other
hand, this driving mode allows to move

multiple axes synchronized meaning multiple
axes can drive a precalculated path. In addition
to that, it is possible to use Coordinate Systems

of Studio 5000 where the target position can
be specified as [x,y] or [x,y,z] vector.

This chapter leads through the additional

configuration steps for this mode which were
not described in the previous chapter. These

steps are required and are not optional.
Ignoring these steps will lead to error 77 or

error 50.

There are also example project available.

4.1 Limitations

The bus cycle time is fixed to 4ms with
Busmodul FW lower than V5.00. This can not

be changed. Additionally, the servo controller
delays all position values by 3.5 bus cycles
which results in a 14ms delay. This delay is

required to compensate lost or delayed
Ethernet frames. This means that Jenny

Science Axes will not start moving at the same
time as other axes with full CIP Sync support.

With Busmodul MP and FW V5.00 or higher

the bus cycle time can be set from 1-4ms. With
1ms the delay will be reduced to 3.5ms.

31

4.2 Virtual Axis

Add a Motion Group

Name the motion group and create it

32

Add a virtual axis to the new motion group.

Name the virtual axis and press create.

Open the properties of the virtual axis.

33

Open the update period settings.

Set all periods to 4ms. Other update periods
are currently not supported with Busmodul FW

lower than V5.00.

With Busmodul MP and FW V5.00 or higher
the bus cycle time can be set from 1-4ms.

Make sure the master delay compensation is
enabled.

This example uses increments as position units.

34

Select a positioning mode according to your
axis type and specify the ratio between

encoder counts and increments. This is 1 in this
case.

Set the maximum values according to your
application and press ok.

35

4.3 Task configuration

Two tasks are required for cyclic motion. The
main Task is a periodic task with low priority.

This periodic task is executed every 4ms or
slower. The second task is an event task

triggered by the Motion Group.

4.3.1 Main Task

The JSAxisCyclicSync is called in the Main Task.
Main Task is a periodic tasks with low priority.

It is possible to increase the period value to for
example 20ms to reduce CPU consumption.

4.3.2 Motion Task

The second task is an event task triggered by
the Motion Group. It must have highest

priority. Make sure that the second checkbox is
disabled. This task links the virtual axis with the

real axis.

36

4.3.3 Enable time Synchronization

Although time synchronization is not used,
some PLC families require it to be enabled in

the Controller settings.

37

5 CIP Sync Motion

With CIP Sync, it is possible to synchronize the
motion of multiple axes with higher accuracy

where needed. However, this option requires a
faster PLC and a network capable of supporting

CIP Sync.

5.1 Limitations

CIP Sync Motion solves the limitation of Cyclic
Synchronous Motion. The delay is reduced

from 3.5 bus cycles to 1 bus cycle. On the other
hand, CIP Sync Motion requires a more precise

interval of the Implicit Messages because the
buffer to correct irregularities is much smaller.

Error 77 indicates that the Implicit Messages
arrive at irregular time intervals.

5.2 Configuration

CIP Sync Motion requires the configuration

steps described in chapter 4 Cyclic
Synchronous Motion and the CIP Sync

Assembly must be selected to activate it.

Additionally, at least the following versions are
required:

 Version

Xenax/Intax Firmware 08.04

Busmodule 05.20

JSC_MC_AOP library 02.00.14

CIP Sync enabled
CIP Sync Disabled

38

6 JS_MC_AOP Motion Library

Jenny Science provides a PLCopen library for

Studio 5000. The PLCopen standard is easy to
understand and includes basic movement
functions as well as Jenny Science specific

features. This library is called JS_MC_AOP and
can be downloaded from
www.jennyscience.com.

(See chapter 1.4 Additional Resources). The
library is already included in all example

projects. It is used by the JSAxis AOI.

6.1 State Diagram

The following diagram shows the state and
the behaviour of the axis when multiple

motion control function blocks are
“simultaneously” active.

Each motion command is a transition that

changes the state of the axis and, as a
consequence, influences the method of

calculation of the current movement.

All function blocks which do not appear in
the state diagram, do not affect the state of

the axis.

The current state of the axis can be
determined with the function block

“JS_MC_ReadStatus”. If a function block is
called where it is not allowed, the function

block reports an error.

The notes describe the necessary conditions
that must be met for a change in an axis

state.

Important:
In the states “Stopping”, “ErrorStop”,

”Disabled” and “Reference” no motion
blocks can be called. In standstill condition,

an axis must always be referenced before
starting a movement.

https://www.jennyscience.com/en/download

39

Note 1:
From any state. An error in the axis occurred.

Note 2:
From any state. JS_MC_Power.Enable = FALSE and there

is no error in the axis.
Note 3:

JS_MC_Reset AND JS_MC_Power.Status = FALSE.
Note 5:

JS_MC_Power.Enable = TRUE AND JS_MC_Power.Status =
TRUE

Note 6:
JS_MC_Stop.Done = TRUE AND JS_MC_Stop.Execute =

FALSE

40

6.2 Required AOIs

The functionality of the JS_MC_AOP in
implemented in various small function blocks. In
this subchapter, all required function blocks are

described. Demo programs in the subsequent
chapters will show the function blocks in action.

6.2.1 Init

This function block must be called once at start up.
It initializes the axis reference handle which is

needed in all function blocks. The function block
must be called before any other JS_MC_AOP block

is called.

Signal Name Direction Description

Enable In The first positive edge initializes the library.

EnforceReferenceDrive In Linear axes only perform a reference drive if they are
not referenced yet. If set, linear axes will always
perform a reference drive. No effect on rotative motors.

OperationMode In 1 = Profile position, drive with JS_MC_MoveAbsolute
8 = Cyclic Synchronous Motion, drive with
JS_MC_MoveCyclicPosition and a virtual axis.

Valid Out Initialization finished successfully

Error Out Error during Initialization.

ErrorID Out Error number

Mc_Axis In/Out The axis reference handle.

6.2.2 CyclicIn

Has to be called at the start of the periodically called
program. This block reads the cyclic data from the

bus.

Signal Name Direction Type Description

Enable In Bool Enables cyclic communication.

Valid Out Bool Cyclic communication is working.

Error Out Bool Error, reset enable to clear error.

ErrorID Out DINT Error number.

AxisRef InOut Module Defines the axis which this function block operates on.

Mc_Axis InOut JS_MC_IS The axis reference handle.

MsgGet InOut Message Message to read motor type.

Msg_Result InOut SINT[10] Message result.

41

6.2.3 CyclicOut

Has to be called as the last JS_MC_AOP block in the
periodically called program. This block writes values

to the fieldbus.
Important: All other JsMcLib blocks must be called

between CyclicIn and CyclicOut.

Signal Name Direction Type Description

Mc_Axis InOut JS_MC_IS Defines the axis which this function block operates on.

MsgGetMode InOut Message Message to read mode of operation.

Msg_GetMode InOut DINT Destination Element of the GetMode message.

MsgSetMode InOut Message Message to write mode of operation.

Msg_SetMode InOut DINT Source Element of the SetMode message.

MsgGet InOut Message Message to read motor type.

6.2.4 Power

The enable input of the power blocks
switches the power stage on and off. The

power stage is turned on when the Status
and Valid output is set.

Signal Name Direction Type Description

Enable Input Bool Positive edge enables the drive power stage.
Negative edge disables the drive power stage or clears
function block error.

Status Output Bool Effective status of the power stage.

Valid Output Bool The power stage is in the requested state.

Error Output Bool Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS Source Element of the SetMode message.

42

6.2.5 Reference
With linear motors, a reference drive must be
executed before any other movement can be

performed. During a reference drive, the motor
moves in one direction. The direction can be

specified with the RefrenceMode input.

Rotary motors can be referenced, but they do not
need to be referenced. However, some functions of

the XENAX® servo controller require a referenced
motor. Motors with ABZ encoders can be

referenced with a Z-Mark in the Motor.
ZMarkSpeedRot defines the speed during such a

reference drive and the ReferenceMode defines the
direction. All rotary motors can be optionally

referenced with a limit switch. The speed during a
limit switch reference drive is defined by the input

ReferenceSpeedRot.

Signal Name Usage Type Description

Execute Input Bool Start reference at rising edge.

ReferenceMode Input SINT Reference modes:
-1: Use reference mode configured in WebMotion
0: motor default LINAX/ELAX: 2
 ROTAX: 10
 3-d Party: 10
1: REF_MARK_POS
2: REF_MARK_NEG
3: GANTRY_POS
4: GANTRY_NEG
5: GANTRY_POS_REV_MOT
6: GANTRY_NEG_REV_MOT
10: CW_CCW
11: CW_CW
12: CCW_CCW
13: CCW_CW
14: CW_SHORT
15: CCW_SHORT
(For more details, see Appendix 8.1)

ZMarkSpeedRot Input DINT Reference speed with Z-mark [increment/s] (only for
rotative drives)

ReferenceSpeedRot Input DINT Reference speed with HW switch [increment/s] (only
for rotative drives)

Done Output Bool Reference procedure has finished successfully.

Busy Output Bool The function block is not finished.

CommandAborted Output Bool Function block is aborted by another command.

Error Output Bool Error occurred within function block.

ErrorID Output Bool Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

MsgRefSet InOut MESSAGE Message to configure reference settings.

Msg_RefSet InOut DINT Source value for Message.

43

6.2.6 Reset

Resets the XENAX® servo controller. A reset brings
the XENAX® servo controller from an error state

back to normal operation.

Signal Name Direction Type Description

Execute Input BOOL Resets Axis Error on rising edge.

Done Output BOOL Error is cleared.

Busy Output BOOL The function block is not finished.

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.2.7 HandleModeOfOperation

This is a library internal function block and must not
be instantiated.

6.3 Optional Function Blocks
To save memory, optional function blocks

can be removed from the project if they are
not needed.

6.3.1 MoveCyclicPosition

This AOI links a virtual axis with a real Jenny Science
Axis. All movements performed on the virtual axis

will be reflected on the Jenny Science axis. Only use
this AOI when operation mode input of Init AOI is

set to 8 (Cyclic Synchronous Position mode).

Signal Name Direction Type Description

Enable Input BOOL If enabled, sends TargetPosition to real axis. Make
sure to set a target Position near the current positon
of the axis. The axis will try to reach the target
position as fast as possible.
Reset enable input if you want to power off the axis or
perform a force calibration.

TargetPosition Input DINT Target position from virtual axis [increment].

CurrentPositon Output DINT Outputs the current position of the real axis.

Mc_Axis InOut JS_MC_IS The axis reference handle.

44

6.3.2 MoveCyclicPositionRotary

This AOI is use used instead of
MoveCyclicPosition if the virtual axis is set to
rotary. This allows to move the virtual axis in
degree and to connect the virtual axis with a

real axis. The Enable input couples the real
and the virtual axis. Make sure to call this

function block every 4ms as soon as
JsAxis.CommunicationOK is active. See demo

application for further details.

Signal Name Direction Type Description

Enable Input BOOL If enabled, the virtual axis is coupled with
the real axis. All changes to
TargetPositionRotary will be recalculated
to increments and send to the real axis.

TargetPositionRotary Input REAL Position in degree of the Virtual Axis in
Rotary Positioning Mode. Use
VAxis.ActualPosition as input value.

VAxisPositionUnits-
PerRevolution

Input DINT The Position Units required for one
revolution of the virtual axis. This can be
calculated by dividing “Position Unwind“
by “Conversion Constant” (see image
below: 36’0000 / 1’000 = 360).

IncrementsPerRevolution Input DINT Increments needed for one revolution of
the real axis. See Webmotion under setup
motor “INC PER REVOLUTION”.

CurrentPositon Output DINT Outputs the current position of the real
axis in increments.

CurrentPositionRotary Output REAL The current position of the real axis
recalculated in degree.

Mc_Axis InOut JS_MC_IS The axis reference handle.

Virtual axis configuration:

45

6.3.3 MoveAbsolute

Drives to an absolute position. The drive is started
with a positive edge at the execute input and is

finished when done output gets set.

Signal Name Direction Type Description

Execute Input BOOL Start move at rising edge.

Position Input DINT Target position [increment].

Velocity Input DINT Maximum velocity [increment/s] (not necessarily
reached).

Acceleration Input DINT Maximum acceleration [increment/s2] (not necessarily
reached).

Scurve Input DINT S-curve parameter during the acceleration [%].

Done Output BOOL Commanded position reached.

Busy Output BOOL The function block is not finished.

CommandAborted Output BOOL Function block is aborted by another command.

Error Output BOOL Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

46

6.3.4 MoveRelative

Drives a defined relative distance from the current

position. The drive is started with a positive edge at

the execute input and is finished when done equals

one.

Signal Name Direction Type Description

Execute Input BOOL Start move at rising edge.

Distance Input DINT Target distance for the motion [increment]

Velocity Input DINT Maximum velocity [increment/s] (not necessarily
reached).

Acceleration Input DINT Maximum acceleration [increment/s2] (not necessarily
reached).

Scurve Input DINT S-curve parameter during the acceleration [%].

Done Output BOOL Commanded position reached.

Busy Output BOOL The function block is not finished.

CommandAborted Output BOOL Function block is aborted by another command.

Error Output BOOL Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.5 JogVelocity

Drives with a constant speed. The speed can be

changed during motion.

Signal Name Direction Type Description

Enable Input BOOL Activates driving with a constant speed.

JogPositive Input BOOL Executes a movement in the positive direction.

JogNegative Input BOOL Executes a movement in the negative direction.

Velocity Input DINT Value of maximum velocity [increment/s]
Note: This value can also be changed while a movement is taking
place.

Acceleration Input DINT Value of maximum acceleration [increment/s2]
Note: This value can also be changed while a movement is taking
place (new value is used at the next velocity change).

Deceleration Input DINT Value of maximum deceleration [increment/s2]
Note: This value can also be changed while a movement is taking
place (new value is used at the next velocity change)

Jogging Output BOOL Movement being carried out.

Active Output BOOL The function block is active, possible to execute
movements.

Busy Output BOOL The function block is not finished.

Mc_Axis InOut JS_MC_IS The axis reference handle.

47

6.3.6 Halt

Aborts any ongoing move absolute or move relative
commands.

Signal Name Direction Type Description

Execute Input BOOL Aborts current MoveAbsolute or MoveRelative
command on rising edge.

Deceleration Input DINT Deceleration used to stop axis [increment/s2].
Range: 2’000- 1’000’000’000.

Done Output BOOL Zero velocity is reached.

Busy Output BOOL The function block is not finished.

CommandAborted Output BOOL Function block is aborted by another command.

Error Output BOOL Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.7 Stop

Stops any motion of the axis and switches to a
stopping state. No drive commands are allowed in

the sopping state. Reset the execute input to leave
the stopping state.

Signal Name Direction Type Description

Execute Input BOOL Stops the axis from any movement on rising edge and
blocks any further movement. The axis is blocked until
execute is released.

Deceleration Input DINT Deceleration used to stop axis [increment/s2].
Range: 2’000- 1’000’000’000.

Done Output BOOL Zero velocity is reached.

Busy Output BOOL The function block is not finished.

CommandAborted Output BOOL Function block is aborted by another command.

Error Output BOOL Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

48

6.3.8 ForceCalibration

Starts a Force Calibration. The axis moves from
start- to end position and measures cogging

force and friction. Those two forces are then
compensated in future drives.

Signal Name Direction Type Description

Execute Input BOOL Starts a force calibration on rising edge.

StartPosition Input DINT Start position for the force calibration [increment].

EndPosition Input DINT End position for the force calibration [increment].

IterativeFcDisable Input BOOL Set to 1 if the motor oscillates during the Force
Calibration. This will clear old calibration data before a
new calibration is started.

Done Output BOOL Force calibration procedure has finished successfully.

Busy Output BOOL The function block is not finished.

CommandAborted Output BOOL Function block is aborted by another command.

Error Output BOOL Error occurred within function block.

ErrorID Output BOOL Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

MsgFCGet InOut Message Get Message for force calibration.

Msg_FCGet InOut DINT Destination element for Get Message.

MsgFCSet InOut Message Set Message for force calibration.

Msg_FCSet InOut DINT Source element for Set Message.

6.3.9 SetOA

SetOA is used to set optional parameters in the
cyclic transmitted output assembly.

Signal Name Direction Type Description

Execute Input BOOL Writes the value on rising edge.

Index Input SINT Select a variable from the output assembly.
5: LimitIForce
6: FollowingPositionErrorWindow
7: TargetPositionWindow

Value Input DINT Value to set in the output assembly.
Note: LimitIForce is set in 10mA steps. A value of 20 corresponds
to 200mA. The other two parameters are set in increments.

Done Output BOOL Value is set.

Error Output BOOL Error occurred within function block.

ErrorID Output DINT Error number.

Mc_Axis InOut JS_MC_IS The axis reference handle.

49

6.3.10 ReadPSR

Reads the Process Status Register (PSR). This
registers contains various information about the

XENAX® servo controller. The PSR shows for
example if the servo controller is referenced.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the actual Process
Status Register of the XENAX controller is read
continuously

Valid Output BOOL A valid set of outputs is available at the
function block.

ProcessStatusRegister Output JS_MC_IS_ProcStat Process Status Register of the XENAX
controller (For more details, see XENAX®
documentation).

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.11 ReadStatus

Reads the current PLCopen state of the XENAX®
servo controller. Only one state can be active at the

time.

Signal Name Direction Type Description

Enable Input BOOL As long as Enable is TRUE, the axis status is read
continuously.

Valid Output BOOL A valid set of outputs is available at the function
block.

Disabled Output BOOL JS_MC_Power has not powered the axis, or an error
had been acknowledged by JS_MC_Reset and the axis
has been turned off.

Standstill Output BOOL JS_MC_Power powers the axis, but no motion
command is active.

Reference Output BOOL JS_MC_Reference has started referencing the axis.

DiscreteMotion Output BOOL Axis is in motion due to one of the following function
blocks: JS_MC_MoveAbsolute, JS_MC_MoveRelative
JS_MC_Halt.

ContinuousMotion Output BOOL Axis is in motion due to the following function block:
JS_MC_JogVelocity, JS_MC_ForceCalibration.

Stopping Output BOOL JS_MC_Stop is active.

ErrorStop Output BOOL An error has occurred. Use JS_MC_Reset to
acknowledge errors.

Mc_Axis InOut JS_MC_IS The axis reference handle.

50

6.3.12 ReadDigitalInput

Reads digital inputs which are located in the
XENAX® socket.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the digital inputs
are read continuously

Valid Output BOOL A valid set of outputs is available at the function
block.

DigitalInput Output DINT The value of digital inputs (bit-coded)

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.13 WriteDigitalOutput

Writes digital outputs which are located in the
XENAX® socket.

Signal Name Direction Type Description

Execute Input BOOL Writes the DigitalOutput value at the rising
edge

DigitalOutput Input DINT The value of digital outputs (bit-coded)

Done Output BOOL Digital outputs are written

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.14 ReadActualPosition

Reads the current position of the XENAX® servo
controller in increments.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the actual position
is read continuously.

Valid Output BOOL A valid set of outputs is available at the function
block.

Position Output DINT Actual position of the axis [increment].

Mc_Axis InOut JS_MC_IS The axis reference handle.

51

6.3.15 WriteLimitCurrent

Sets the current limitation in [10mA]. Example
a value of 20 corresponds to 200mA.

Signal Name Direction Type Description

Enable Input BOOL If true, writes the current limitation into the
output assembly.

LimitCurrent Input INT Current limitation [10mA].

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.16 WriteLimitForce

Sets the force limitation based on the
Forceteq® sensor.

Signal Name Direction Type Description

Enable Input BOOL If true, writes the force limitation into the
output assembly.

LimitForce Input DINT Force limitation [mN].

Mc_Axis InOut JS_MC_IS The axis reference handle.

52

6.3.17 ReadActualCurrent

Reads the motor current in mA.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the actual current
is read continuously.

Valid Output BOOL A valid set of outputs is available at the function
block

Current Output INT Actual motor current [mA].

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.18 ReadActualForce

Reads the force in mN measured by the
Signateq® force sensor.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the actual current
is read continuously.

Valid Output BOOL A valid set of outputs is available at the function
block.

Force Output DINT Actual force measured by Signateq® [mN].

Mc_Axis InOut JS_MC_IS The axis reference handle.

53

6.3.19 ReadAxisError

ReadAxisError records all errors and stores them in
a list. Each error is then displayed and can be

acknowledged individually. In case of an axis error,
the error number of the axis is shown. A displayed
function block error will provide the function block

error number as well as the source block which
produced the error.

Signal Name Direction Type Description

Enable Input BOOL As long as Enable is TRUE, the function
block can be used to read out axis and
function block errors

AcknowledgeRecorded Input BOOL Acknowledges the error record currently
displayed at the output of this function
block.
Note: Only the displayed error record is acknowledged.
The errors at the axis must be first acknowledged with the
reset function block. Similarly, a function block error must
be first acknowledged by resetting its enable or execute
input.

Busy Output BOOL The function block is not finished
Note: This output is set after a positive edge at
AcknowledgeRecorded until the new error is displayed.

ErrorRecordAvailable Output BOOL Set if a recorded error is displayed.

RecordedErrorNumber Output DINT Error Number (see chapter 6.5)

RecordedSource Output SINT Indicates where the error happened
(see chapter 6.6).

RecordedType Output SINT 1: Axis error
2: Axis warning
3: Function block error

AxisHasError Output BOOL Pending axis error to display.

AxisHasWarning Output BOOL Pending axis warning to display.

FunctionBlockErrorCount Output DINT Number of pending function block errors
to display.

Error Output BOOL Error occurred within this function block
(JS_MC_ReadAxisError).

ErrorID Output DINT Error number of this function block
(JS_MC_ReadAxisError).

Mc_Axis InOut JS_MC_IS The axis reference handle.

MsgErrorGet InOut Message Get Message to read out axis error
number.

Msg_ErrorGet InOut INT Destination variable for get message.

54

6.3.20 AxisErrorCollector

The AxisErrorCollector is a lightweight version of the
ReadAxisError. This block shows only that an error

happened, but not exactly which one and where.

Signal Name Direction Type Description

Enable Input BOOL As long as "Enable" is TRUE, the function block
determines error information.

Valid Output BOOL A valid set of outputs is available at the
function block.

AxisError Output BOOL The axis is in error state.

AxisWarning Output BOOL The axis is in warning state.

Errorstop Output BOOL The current PCLopen State is "Errorstop".

FunctionBlockError Output BOOL A Jenny Science function block is in error state

Mc_Axis InOut JS_MC_IS The axis reference handle.

6.3.21 GetAttribute

Sends a GetAttributeSingle message over the
EtherNet/IP bus to read a parameter attribute.

Signal Name Direction Type Description

Execute Input BOOL Starts the Message by calling a MSG()
command.

Class Input INT The Class if the attribute.

AttributeId Input BOOL The Id if the attribute.

Done Output BOOL True if the last MSG get command is finished
successfully.

AttributeValue Output DINT Result of the last MSG get command.

Busy Output BOOL True if the last MSG get command is ongoing.

Error Output BOOL True if the last MSG get command is finished
with an error.

ErrorID Output DINT Error Number of the Message.

55

6.3.22 SetAttribute

Sends a SetAttributeSingle message over the
EtherNet/IP bus to read a parameter attribute.

Signal Name Direction Type Description

Execute Input BOOL Starts the Message by calling a MSG()
command.

Class Input INT The Class if the attribute.

AttributeId Input BOOL The Id if the attribute.

AttributeValue Input Output True if the last MSG get command is finished
successfully.

AttributeLength Input INT Attribute length in bytes.

Done Output Output True if the last MSG get command is finished
successfully.

Busy Output BOOL True if the last MSG get command is ongoing.

Error Output BOOL True if the last MSG get command is finished
with an error.

ErrorID Output DINT Error Number of the Message.

56

6.4 Minimum and Maximum Values of Function
Blocks

Following minimum and maximum values of the

function blocks should be adhered to.

name datatype min max

Velocity linear UDINT 10 inc/s 9000000 inc/s

Velocity rotative UDINT 10 inc/s 100000000 inc/s

Deceleration UDINT 2000 inc/s2 1000000000 inc/s2

Acceleration UDINT 2000 inc/s2 1000000000 inc/s2

S-curve UDINT 1 % 100 %

6.5 Error Numbers of JS_MC_AOP

The following ErrorIDs can be generated by the
JsMcLib function blocks. Lower numbers than 5000

are Axis Error generated by the XENAX® servo
controller. Please look up those errors in the XENAX®

Manual.

Value Name Description Correction

0 ERR_OK
FUB executed correctly
with no errors

None.

50000 jsmcERR_NIL_POINTER No axis passed to FB
Ensure function block call only with
correct axis passed.

50001 jsmcERR_DRIVE_NOT_READY
controller is not ready to
switch on

Check controller for errors
Check in software if CPS block in front of
JS_MC_INIT copies the axis input into the
correct axis structure. (see demo
application)

50002 jsmcERR_DRIVE_SWITCHED_OFF controller is switched off
Don't call function block when controller
is switched off

50004 jsmcERR_REFERENCE_WRONG_METHOD
Reference method is not
correct for the motor

Check documentation for allowed
reference methods for the motor

50006 jsmcERR_ACCE_TO_SMALL Acceleration is to small Use larger acceleration (>=2000 inc/s2)

50008 jsmcERR_SCURVE_NOT_IN_RANGE
Scurve is not in allowed
range

Use Scurve in allowed range (1...100%)

50010 jsmcERR_SDO_COMM_FAILURE
Failure during SDO
communication

Check power link connection to the Servo
Controller

50011 jsmcERR_POWER_UP_FAILURE
Failure during power up
sequence

Check Servo Controller for correct power
supply

50012 jsmcERR_POWER_LOST
Power was turned off
outside of JS_MC_Power
control

Check and quit errors from other
function blocks or axis, which caused the
power off

50013 jsmcERR_WRONG_STATE_FOR_FB
The FB cannot be used in
the current state

Check program to call FB's only in
allowed states

50014 jsmcERR_WRONG_OP_MODE_FOR_FB
The FB cannot be used in
the current mode of
operation

Only use allowed FB's for the desired
mode of operation (profile position or
cyclic synchronized)

50015 jsmcERR_EXECUTION_ERROR
The FB failed during
execution by an external
error

Check and quit errors from other
function blocks or axes, which caused the
fault

57

50016 jsmcERR_BUFFER_TO_SMALL
The buffer for the error
text string is to small

Put a pointer to a buffer for the error
text string which size is at least 50
characters

50017 jsmcERR_TEXT_OBJ_NOT_FOUND
Error text object or
function block text object
not found

Enter correct name of the error text
object and ensure, that the error text
object (JsMcEtxDe/JsMcEtxEn) and the
function block text object (JsMcFBtxEn)
are present in the project

50018 jsmcERR_TEXT_READOUT_FAILURE
Error text or function
block text could not be
read successfully

Ensure that the error text object
(JsMcEtxDe/JsMcEtxEn) and the function
block text object (JsMcFBtxEn) are
present in the project

50019 jsmcERR_WRONG_GENERAL_OP_MODE
general mode of
operation not supported

Set a supported general mode of
operation in JS_MC_Init (OperationMode
= jsmcMODE_PROFILE_POSITION or
jsmcMODE_CYCLIC_SYNC)

50020 jsmcERR_REF_SPEED_NOT_IN_RANGE
Reference speed for
rotative motors is out of
range

Use reference speed in allowed range
(0...250000 inc/s)

50021 jsmcERR_ZMARK_SPEED_NOT_IN_RANGE
Z-Mark speed for rotative
motors is out of range

Use Z-Mark speed in allowed range
(0...100000 inc/s)

50022 jsmcERR_VELOCITY_NOT_IN_RANGE Velocity is out of range
Use velocity in allowed range
(10...9000000 inc/s for linear motor,
10...100000000 inc/s for rotative motor)

50023 jsmcERR_ACCE_TO_LARGE Acceleration is to large
Use smaller acceleration (smaller than
1000000000 inc/s^2)

50024 jsmcERR_CYCLE_TIME_FAILURE Cycle time setting failure
Use correct cycle time setting (bus cycle
time >= 4ms and software task cycle time
>= bus cycle time)

50025 jsmcERR_DECE_TO_SMALL Deceleration is to small Use larger deceleration (>=2000 inc/s)

50026 jsmcERR_DECE_TO_LARGE Deceleration is to large
Use smaller deceleration (smaller than
1000000000 inc/s^2)

50027 jsmcERR_FW_VERS_FAILURE Firmware version failure Use XENAX firmware V3.64D or later

50028 jsmcERR_PDO_MAPPING_CHK_FAILURE
Failure during PDO
mapping check

Error in AsIOPVInfo() function block of
AsIO library

50029 jsmcERR_PDO_MAPPING_MISSING
Necessary PDO mapping
missing

Check, if all necessary PDOs are mapped
in I/O Mapping

50030 jsmcERR_NO_DATA_ADDRESS_ASSIGNED
No data address for error
text string assigned

Assign valid data address for error text
string

50031 jsmcERR_SDO_ACCESS_FAILURE Invalid SDO access
Check input values DataObject, SubID
and DataLength and set correct values

50032 jsmcERR_CYCLIC_COMM_INTERRUPTED
Cyclic communication
interrupted

Don't enable power until JS_MC_CyclicIn
is valid and no cyclic communication is
running

50033 jsmcERR_SPAD_FAILURE Wrong set point acknowledge setting

50034 jsmcERR_INDEX_NOTVALID Index not valid

50035 jsmcERR_VALUE_OUTOFRANGE Value not in range

50036 jsmcERR_FC_INPUTS_NOTVALID Force calibration inputs not valid

50037 jsmcERR_FC_NO_LINEAR Force calibration only with linear motors

50038 jsmcERR_FC_REF_ERROR Force calibration: Error during reference

58

50039 jsmcERR_FC_MOTION_ERROR Force calibration: Error during motion

50040 jsmcERR_UNKNOWN_MOTORTYPE Unknown motor type

50041 jsmcERR_MSG_INIT_GET_TOO_SMALL

The MsgInit_Get is too small. Since Version 2.0.14, an array length of
30 is required.

6.6 Error Sources

The error source block can be found in the
ErrorRecord output of the ReadAxisError block. The

table below associates sources number with the
corresponding function block.

ErrorSource Error srouce

1 Axis error or warning

2 CyclicIn

3 Power

4 Reference

5 MoveAbsolute

6 MoveRelative

7 MoveCyclicPosition

8 Stop

9 Halt

10 AxisErrorCollector

11 ReadAxisError

12 ReadParameter

13 WriteParameter

14 JogVelocity

15 ReadActualCurrent

16 ReadDigitalInput

17 ReadDigitalOutput

18 WriteDigitalOuput

19 SetPDO

20 ForceCalibration

6.7 Error Type

The error type is important for error handling.
Because of that, the error type is provided in the error

record in an additional field.

ErrorTyp Funktionsblock im Fehler

1 Axis error

2 Axis warning

3 Function block error

59

7 Upgrade from XENAX® 48V8/75V8 to 75V8S

The XENAX® 75V8S is a replacement for the older
75V8. The new servo controller is meant as a one to

one replacement. However, they have a different
product ID. This means that the project must be

reconfigured for the new product ID. Follow the steps
this chapter to replace a XENAX®.

7.1 Replace XENAX in project configuration

Open the properties panel of the old XENAX® servo
controller which should be replaced.

Remember the module properties of the old XENAX®.

Delete the old XENAX®.

60

Select new Module to add the new servo controller.

Choose the XENAX® Xvi 75V8S.

Configure the XENAX® Xvi 75V8S with the same
parameters as the old XENAX®

61

7.2 Check Input/Output Assembly

The configured assemblies of the servo controller
must match with the assemblies used by the program.
Otherwise, cyclic transferred data like target position

or current position will be transferred incorrectly.

The configured assembly data structure can be found
in the CPS block in front if the axis block. Axis1 is the

configured assembly and Mc_Axis1 contains the
assembly used by the program.

Inspect the configured assembly.

The configured assembly must be the same as the
Mc_Axis1.Inputs and Outputs structure.

62

If the two structures do not match, the configured

assembly must be changed. This can be done in the
properties of the XENAX®.

More information about the different assemblies can

be found in the Ethernet_IP_Manual.pdf which can be
downloaded from: https://www.jennyscience.com

under XENAX® Servocontroller →Manual Bus Module

https://www.jennyscience.ch/en/download

63

8 Appendix

8.1 Reference methods

LINAX® linear motor axes

1 REFERENCE, start direction positive

2 REFERENCE, start direction negative

3 REFERENCE, gantry system, direction positive, linear motor axes same measurement system orientation

4 REFERENCE, gantry system, direction negative, linear motor axes same measurement system orientation

5 REFERENCE, gantry system, direction positive, linear motors axes contrary measurement system orientation

6 REFERENCE, gantry system, direction negative, linear motors axes contrary measurement system orientation

ROTAX® and third-party motors

10 REFERENCE, start clockwise -> external reference Sensor(*), continue counter clockwise -> Z-mark

11 REFERENCE, start clockwise -> external reference Sensor(*), continue clockwise -> Z-mark

12 REFERENCE, start counter clockwise -> external reference Sensor(*), continue counter clockwise -> Z-mark

13 REFERENCE, start, counter clockwise -> external reference Sensor(*), continue clockwise -> Z-mark

Only ROTAX® Rxvp

14 REFERENCE, start clockwise -> external reference Sensor(*), continue shortest way-> Z-mark

15 REFERENCE, start counter clockwise -> external reference Sensor(*), continue shortest way-> Z-mark

(*) If there is no external sensor, then set input

“ReferenceSpeedRot” = 0

64

This instruction manual contains copyright
protected information. All rights are reserved.
This document may not be entirely or partially

copied, duplicated or translated without the
prior consent of Jenny Science AG.

Jenny Science AG grants no guarantee on, or will

be held responsible for, any incidents resulting
from false information.

Information in this instruction manual might be

subject to change.

Jenny Science AG
Sandblatte 11
CH-6026 Rain

Tel +41 (0) 41 255 25 25

www.jennyscience.ch
info@jennyscience.ch

© C o p y r i g h t J e n n y S c i e n c e A G 2 0 2 5

M a n u a l S t u d i o - 5 0 0 0 A l l e n B r a d l e y - X E N A X ®

